OpenAIEmbeddings
This will help you get started with OpenAI embedding models using LangChain. For detailed documentation on OpenAIEmbeddings
features and configuration options, please refer to the API reference.
Overviewโ
Integration detailsโ
Provider | Package |
---|---|
OpenAI | langchain-openai |
Setupโ
To access OpenAI embedding models you'll need to create a/an OpenAI account, get an API key, and install the langchain-openai
integration package.
Credentialsโ
Head to platform.openai.com to sign up to OpenAI and generate an API key. Once youโve done this set the OPENAI_API_KEY environment variable:
import getpass
import os
if not os.getenv("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installationโ
The LangChain OpenAI integration lives in the langchain-openai
package:
%pip install -qU langchain-openai
Instantiationโ
Now we can instantiate our model object and generate chat completions:
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
# With the `text-embedding-3` class
# of models, you can specify the size
# of the embeddings you want returned.
# dimensions=1024
)
Indexing and Retrievalโ
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the working with external knowledge tutorials.
Below, see how to index and retrieve data using the embeddings
object we initialized above. In this example, we will index and retrieve a sample document in the InMemoryVectorStore
.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications"
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications'
Direct Usageโ
Under the hood, the vectorstore and retriever implementations are calling embeddings.embed_documents(...)
and embeddings.embed_query(...)
to create embeddings for the text(s) used in from_texts
and retrieval invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.
Embed single textsโ
You can embed single texts or documents with embed_query
:
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100]) # Show the first 100 characters of the vector
[-0.019276829436421394, 0.0037708976306021214, -0.03294256329536438, 0.0037671267054975033, 0.008175
Embed multiple textsโ
You can embed multiple texts with embed_documents
:
text2 = (
"LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
print(str(vector)[:100]) # Show the first 100 characters of the vector
[-0.019260549917817116, 0.0037612367887049913, -0.03291035071015358, 0.003757466096431017, 0.0082049
[-0.010181212797760963, 0.023419594392180443, -0.04215526953339577, -0.001532090245746076, -0.023573